EconPapers    
Economics at your fingertips  
 

Prediction and visualization of Mergers and Acquisitions using Economic Complexity

Lorenzo Arsini, Matteo Straccamore and Andrea Zaccaria

PLOS ONE, 2023, vol. 18, issue 4, 1-27

Abstract: Mergers and Acquisitions represent important forms of business deals, both because of the volumes involved in the transactions and because of the role of the innovation activity of companies. Nevertheless, Economic Complexity methods have not been applied to the study of this field. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones. We address both the problem of predicting a pair of companies for a future deal and that of finding a target company given an acquirer. We compare different forecasting methodologies, including machine learning and network-based algorithms, showing that a simple angular distance with the addition of the industry sector information outperforms the other approaches. Finally, we present the Continuous Company Space, a two-dimensional representation of firms to visualize their technological proximity and possible deals. Companies and policymakers can use this approach to identify companies most likely to pursue deals or explore possible innovation strategies.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283217 (text/html)
https://journals.plos.org/plosone/article?id=10.13 ... 83217&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0283217

DOI: 10.1371/journal.pone.0283217

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0283217