EconPapers    
Economics at your fingertips  
 

Drivers of the decrease of patent similarities from 1976 to 2021

Edoardo Filippi-Mazzola, Federica Bianchi and Ernst C Wit

PLOS ONE, 2023, vol. 18, issue 3, 1-13

Abstract: The citation network of patents citing prior art arises from the legal obligation of patent applicants to properly disclose their invention. One way to study the relationship between current patents and their antecedents is by analyzing the similarity between the textual elements of patents. Many patent similarity indicators have shown a constant decrease since the mid-70s. Although several explanations have been proposed, more comprehensive analyses of this phenomenon have been rare. In this paper, we use a computationally efficient measure of patent similarity scores that leverages state-of-the-art Natural Language Processing tools, to investigate potential drivers of this apparent similarity decrease. This is achieved by modeling patent similarity scores by means of generalized additive models. We found that non-linear modeling specifications are able to distinguish between distinct, temporally varying drivers of the patent similarity levels that explain more variation in the data (R2 ∼ 18%) compared to previous methods. Moreover, the model reveals an underlying trend in similarity scores that is fundamentally different from the one presented previously.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283247 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83247&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0283247

DOI: 10.1371/journal.pone.0283247

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0283247