EconPapers    
Economics at your fingertips  
 

A computational predictor of the anaerobic mechanical power outputs from a clinical exercise stress test

Efrat Leopold, Tamir Tuller and Mickey Scheinowitz

PLOS ONE, 2023, vol. 18, issue 5, 1-9

Abstract: We previously were able to predict the anaerobic mechanical power outputs using features taken from a maximal incremental cardiopulmonary exercise stress test (CPET). Since a standard aerobic exercise stress test (with electrocardiogram and blood pressure measurements) has no gas exchange measurement and is more popular than CPET, our goal, in the current paper, was to investigate whether features taken from a clinical exercise stress test (GXT), either submaximal or maximal, can predict the anaerobic mechanical power outputs to the same level as we found with CPET variables. We have used data taken from young healthy subjects undergoing CPET aerobic test and the Wingate anaerobic test, and developed a computational predictive algorithm, based on greedy heuristic multiple linear regression, which enabled the prediction of the anaerobic mechanical power outputs from a corresponding GXT measures (exercise test time, treadmill speed and slope). We found that for submaximal GXT of 85% age predicted HRmax, a combination of 3 and 4 variables produced a correlation of r = 0.93 and r = 0.92 with % error equal to 15 ± 3 and 16 ± 3 on the validation set between real and predicted values of the peak and mean anaerobic mechanical power outputs (p

Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283630 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83630&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0283630

DOI: 10.1371/journal.pone.0283630

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0283630