ECG signal classification in wearable devices based on compressed domain
Jing Hua,
Binbin Chu,
Jiawen Zou and
Jing Jia
PLOS ONE, 2023, vol. 18, issue 4, 1-23
Abstract:
Wearable devices are often used to diagnose arrhythmia, but the electrocardiogram (ECG) monitoring process generates a large amount of data, which will affect the detection speed and accuracy. In order to solve this problem, many studies have applied deep compressed sensing (DCS) technology to ECG monitoring, which can under-sampling and reconstruct ECG signals, greatly optimizing the diagnosis process, but the reconstruction process is complex and expensive. In this paper, we propose an improved classification scheme for deep compressed sensing models. The framework is comprised of four modules: pre-processing; compression; and classification. Firstly, the normalized ECG signals are compressed adaptively in the three convolutional layers, and then the compressed data is directly put into the classification network to obtain the results of four kinds of ECG signals. We conducted our experiments on the MIT-BIH Arrhythmia Database and Ali Cloud Tianchi ECG signal Database to validate the robustness of our model, adopting Accuracy, Precision, Sensitivity and F1-score as the evaluation metrics. When the compression ratio (CR) is 0.2, our model has 98.16% accuracy, 98.28% average accuracy, 98.09% Sensitivity and 98.06% F1-score, all of which are better than other models.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284008 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84008&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284008
DOI: 10.1371/journal.pone.0284008
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().