Urban modeling of shrinking cities through Bayesian network analysis using economic, social, and educational indicators: Case of Japanese cities
Haruka Kato
PLOS ONE, 2023, vol. 18, issue 4, 1-13
Abstract:
Shrinking cities due to low birthrates and aging populations represent a significant urban planning issue. The research question of this study is: which economic, social, and educational factors affect population decline in Japanese shrinking cities? By modeling shrinking cities using the case of Japanese cities, this study aims to clarify the indicators that affect the population change rate. The study employed Bayesian network analysis, a machine learning technique, using a dataset of economic, social, and educational indicators. In conclusion, this study demonstrates that social and educational indicators affect the population decline rate. Surprisingly, the impact of educational indicators is more substantial than that of economic indicators such as the financial strength index. Considering the limitations in fiscal expenditures, increasing investment in education might help solve the problem of shrinking cities because of low birthrates and aging populations. The results provide essential insights and can function as a planning support system.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284134 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84134&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284134
DOI: 10.1371/journal.pone.0284134
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().