EconPapers    
Economics at your fingertips  
 

Mixture prior for sparse signals with dependent covariance structure

Ling Wang and Zongqiang Liao

PLOS ONE, 2023, vol. 18, issue 4, 1-16

Abstract: In this study, we propose an estimation method for normal mean problem that can have unknown sparsity as well as correlations in the signals. Our proposed method first decomposes arbitrary dependent covariance matrix of the observed signals into two parts: common dependence and weakly dependent error terms. By subtracting common dependence, the correlations among the signals are significantly weakened. It is practical for doing this because of the existence of sparsity. Then the sparsity is estimated using an empirical Bayesian method based on the likelihood of the signals with the common dependence removed. Using simulated examples that have moderate to high degrees of sparsity and different dependent structures in the signals, we demonstrate that the performance of our proposed algorithm is favorable compared to the existing method which assumes the signals are independent identically distributed. Furthermore, our approach is applied on the widely used “Hapmap” gene expressions data, and our results are consistent with the findings in other studies.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284284 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84284&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284284

DOI: 10.1371/journal.pone.0284284

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0284284