COVID-19 outbreak prediction using Seq2Seq + Attention and Word2Vec keyword time series data
Yeongha Kim,
Chang-Reung Park,
Jae-Pyoung Ahn and
Beakcheol Jang
PLOS ONE, 2023, vol. 18, issue 4, 1-21
Abstract:
As of 2022, COVID-19, first reported in Wuhan, China, in November 2019, has become a worldwide epidemic, causing numerous infections and casualties and enormous social and economic damage. To mitigate its impact, various COVID-19 prediction studies have emerged, most of them using mathematical models and artificial intelligence for prediction. However, the problem with these models is that their prediction accuracy is considerably reduced when the duration of the COVID-19 outbreak is short. In this paper, we propose a new prediction method combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention model. We compare the prediction error of the existing and proposed models with the COVID-19 prediction results reported from five US states: California, Texas, Florida, New York, and Illinois. The results of the experiment show that the proposed model combining Word2Vec and the existing long short-term memory and Seq2Seq + Attention achieves better prediction results and lower errors than the existing long short-term memory and Seq2Seq + Attention models. In experiments, the Pearson correlation coefficient increased by 0.05 to 0.21 and the RMSE decreased by 0.03 to 0.08 compared to the existing method.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284298 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84298&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284298
DOI: 10.1371/journal.pone.0284298
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().