A framework of interpretable match results prediction in football with FIFA ratings and team formation
Calvin C K Yeung,
Rory Bunker and
Keisuke Fujii
PLOS ONE, 2023, vol. 18, issue 4, 1-15
Abstract:
While forecasting football match results has long been a popular topic, a practical model for football participants, such as coaches and players, has not been considered in great detail. In this study, we propose a generalized and interpretable machine learning model framework that only requires coaches’ decisions and player quality features for forecasting. By further allowing the model to embed historical match statistics, features that consist of significant information, during the training process the model was practical and achieved both high performance and interpretability. Using five years of data (over 1,700 matches) from the English Premier League, our results show that our model was able to achieve high performance with an F1-score of 0.47, compared to the baseline betting odds prediction, which had an F1-score of 0.39. Moreover, our framework allows football teams to adapt for tactical decision-making, strength and weakness identification, formation and player selection, and transfer target validation. The framework in this study would have proven the feasibility of building a practical match result forecast framework and may serve to inspire future studies.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284318 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84318&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284318
DOI: 10.1371/journal.pone.0284318
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().