Brain tumor detection and segmentation: Interactive framework with a visual interface and feedback facility for dynamically improved accuracy and trust
Kashfia Sailunaz,
Deniz Bestepe,
Sleiman Alhajj,
Tansel Özyer,
Jon Rokne and
Reda Alhajj
PLOS ONE, 2023, vol. 18, issue 4, 1-47
Abstract:
Brain cancers caused by malignant brain tumors are one of the most fatal cancer types with a low survival rate mostly due to the difficulties in early detection. Medical professionals therefore use various invasive and non-invasive methods for detecting and treating brain tumors at the earlier stages thus enabling early treatment. The main non-invasive methods for brain tumor diagnosis and assessment are brain imaging like computed tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI) scans. In this paper, the focus is on detection and segmentation of brain tumors from 2D and 3D brain MRIs. For this purpose, a complete automated system with a web application user interface is described which detects and segments brain tumors with more than 90% accuracy and Dice scores. The user can upload brain MRIs or can access brain images from hospital databases to check presence or absence of brain tumor, to check the existence of brain tumor from brain MRI features and to extract the tumor region precisely from the brain MRI using deep neural networks like CNN, U-Net and U-Net++. The web application also provides an option for entering feedbacks on the results of the detection and segmentation to allow healthcare professionals to add more precise information on the results that can be used to train the model for better future predictions and segmentations.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284418 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84418&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284418
DOI: 10.1371/journal.pone.0284418
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().