GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning
Jun Seo Ha and
Hyundoo Jeong
PLOS ONE, 2023, vol. 18, issue 4, 1-22
Abstract:
Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284527 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84527&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284527
DOI: 10.1371/journal.pone.0284527
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().