EconPapers    
Economics at your fingertips  
 

ECG classification using 1-D convolutional deep residual neural network

Fahad Khan, Xiaojun Yu, Zhaohui Yuan and Atiq ur Rehman

PLOS ONE, 2023, vol. 18, issue 4, 1-22

Abstract: An electrocardiograph (ECG) is widely used in diagnosis and prediction of cardiovascular diseases (CVDs). The traditional ECG classification methods have complex signal processing phases that leads to expensive designs. This paper provides a deep learning (DL) based system that employs the convolutional neural networks (CNNs) for classification of ECG signals present in PhysioNet MIT-BIH Arrhythmia database. The proposed system implements 1-D convolutional deep residual neural network (ResNet) model that performs feature extraction by directly using the input heartbeats. We have used synthetic minority oversampling technique (SMOTE) that process class-imbalance problem in the training dataset and effectively classifies the five heartbeat types in the test dataset. The classifier’s performance is evaluated with ten-fold cross validation (CV) using accuracy, precision, sensitivity, F1-score, and kappa. We have obtained an average accuracy of 98.63%, precision of 92.86%, sensitivity of 92.41%, and specificity of 99.06%. The average F1-score and Kappa obtained were 92.63% and 95.5% respectively. The study shows that proposed ResNet performs well with deep layers compared to other 1-D CNNs.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284791 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84791&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284791

DOI: 10.1371/journal.pone.0284791

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pone00:0284791