EconPapers    
Economics at your fingertips  
 

A new method for fault identification of T-connection transmission line based on multi-scale traveling wave reactive power and random forest

Yawen Zhong, Jie Yang, Sheng Wang, Sijing Deng and Liang Hu

PLOS ONE, 2023, vol. 18, issue 8, 1-32

Abstract: Though the traditional fault diagnosis method of T-connected transmission lines can identify the faults inside and outside the area, it can not identify the specific branches. To improve the accuracy and reliability of fault diagnosis of T-connection transmission lines, a new method is proposed to identify specific faulty branches of T-connection transmission lines based on multi-scale traveling wave reactive power and random forest. Based on the S-transform, the mean and sum ratios of the corresponding short-time series traveling wave reactive powers of each two traveling wave protection units at multiple frequencies are calculated respectively to form the fault feature vector sample set of the T-connection transmission line. A random forest fault branch identification model is established, and it is trained and tested by the fault feature sample set of T-connection transmission line to identify the fault branch. The simulation results show that the proposed algorithm can identify the branch where the fault is located inside and outside the protection zone of T-connection transmission line quickly and accurately under various working conditions. This method also shows good performance to identify faults even under the situation of CT saturation, noise influence and data loss.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284937 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84937&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0284937

DOI: 10.1371/journal.pone.0284937

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0284937