Rehabilitation exoskeleton torque control based on PSO-RBFNN optimization
Jiayi Li,
Yuanzheng Tai and
Fanwei Meng
PLOS ONE, 2023, vol. 18, issue 8, 1-14
Abstract:
Exoskeletons are widely used in the field of medical rehabilitation, however imprecise exoskeleton control may lead to accidents during patient rehabilitation, so improving the control performance of exoskeletons has become crucial. Nevertheless, improving the control performance of exoskeletons is extremely difficult, the nonlinear nature of the exoskeleton model makes control particularly difficult, and external interference when the patient wears an exoskeleton can also affect the control effect. In order to solve the above problems, a method based on particle swarm optimization (PSO) and RBF neural network to optimize exoskeleton torque control is proposed to study the motion trajectory of nonlinear exoskeleton joints in this paper, and it is found that exoskeleton torque control optimized by PSO-RBFNN has faster control speed, better stability, more accurate control results and stronger anti-interference, and the optimized exoskeleton can effectively solve the problem of difficult control of nonlinear exoskeleton and the interference problem when the patient wears the exoskeleton.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285453 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85453&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0285453
DOI: 10.1371/journal.pone.0285453
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().