EconPapers    
Economics at your fingertips  
 

Henry gas solubility optimization double machine learning classifier for neurosurgical patients

Diana T Mosa, Amena Mahmoud, John Zaki, Shaymaa E Sorour, Shaker El-Sappagh and Tamer Abuhmed

PLOS ONE, 2023, vol. 18, issue 5, 1-22

Abstract: This study aims to predict head trauma outcome for Neurosurgical patients in children, adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare field, a comparative study of various ML techniques is developed. Several algorithms are utilized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and Support Vector Machine (SVM). Their performance is assessed using anonymous patients’ data. Then, a proposed double classifier based on Henry Gas Solubility Optimization (HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to classify patients’ outcome status into four states. Those are mortality, morbidity, improved, or the same. The double classifiers are evaluated via various performance metrics including recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research is the original use of hybrid technique based on RF-SVM and HGSO to predict patient outcome status with high accuracy. It determines outcome status relationship with age and mode of trauma. The algorithm is tested on more than 1000 anonymous patients’ data taken from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results show that the proposed method has the highest accuracy of 99.2% (with population size = 30) compared with other classifiers.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285455 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85455&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0285455

DOI: 10.1371/journal.pone.0285455

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0285455