EconPapers    
Economics at your fingertips  
 

Multi-region electricity demand prediction with ensemble deep neural networks

Muhammad Irfan, Ahmad Shaf, Tariq Ali, Mariam Zafar, Saifur Rahman, Salim Nasar Faraj Mursal, Faisal AlThobiani, Majid A. Almas, H M Attar and Nagi Abdussamiee

PLOS ONE, 2023, vol. 18, issue 5, 1-23

Abstract: Electricity consumption prediction plays a vital role in intelligent energy management systems, and it is essential for electricity power supply companies to have accurate short and long-term energy predictions. In this study, a deep-ensembled neural network was used to anticipate hourly power utilization, providing a clear and effective approach for predicting power consumption. The dataset comprises of 13 files, each representing a different region, and ranges from 2004 to 2018, with two columns for the date, time, year and energy expenditure. The data was normalized using minmax scalar, and a deep ensembled (long short-term memory and recurrent neural network) model was used for energy consumption prediction. This proposed model effectively trains long-term dependencies in sequence order and has been assessed using several statistical metrics, including root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute bias error (MABE), coefficient of determination (R2), mean bias error (MBE), and mean absolute percentage error (MAPE). Results show that the proposed model performs exceptionally well compared to existing models, indicating its effectiveness in accurately predicting energy consumption.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285456 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85456&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0285456

DOI: 10.1371/journal.pone.0285456

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0285456