Deep learning generates custom-made logistic regression models for explaining how breast cancer subtypes are classified
Takuma Shibahara,
Chisa Wada,
Yasuho Yamashita,
Kazuhiro Fujita,
Masamichi Sato,
Junichi Kuwata,
Atsushi Okamoto and
Yoshimasa Ono
PLOS ONE, 2023, vol. 18, issue 5, 1-19
Abstract:
Differentiating the intrinsic subtypes of breast cancer is crucial for deciding the best treatment strategy. Deep learning can predict the subtypes from genetic information more accurately than conventional statistical methods, but to date, deep learning has not been directly utilized to examine which genes are associated with which subtypes. To clarify the mechanisms embedded in the intrinsic subtypes, we developed an explainable deep learning model called a point-wise linear (PWL) model that generates a custom-made logistic regression for each patient. Logistic regression, which is familiar to both physicians and medical informatics researchers, allows us to analyze the importance of the feature variables, and the PWL model harnesses these practical abilities of logistic regression. In this study, we show that analyzing breast cancer subtypes is clinically beneficial for patients and one of the best ways to validate the capability of the PWL model. First, we trained the PWL model with RNA-seq data to predict PAM50 intrinsic subtypes and applied it to the 41/50 genes of PAM50 through the subtype prediction task. Second, we developed a deep enrichment analysis method to reveal the relationships between the PAM50 subtypes and the copy numbers of breast cancer. Our findings showed that the PWL model utilized genes relevant to the cell cycle-related pathways. These preliminary successes in breast cancer subtype analysis demonstrate the potential of our analysis strategy to clarify the mechanisms underlying breast cancer and improve overall clinical outcomes.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286072 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 86072&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0286072
DOI: 10.1371/journal.pone.0286072
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().