EconPapers    
Economics at your fingertips  
 

Prelnc2: A prediction tool for lncRNAs with enhanced multi-level features of RNAs

Hua Gao, Peng Gao and Ning Ye

PLOS ONE, 2023, vol. 18, issue 6, 1-15

Abstract: Long non-coding RNAs (lncRNAs) have been widely studied for their important biological significance. In general, we need to distinguish them from protein coding RNAs (pcRNAs) with similar functions. Based on various strategies, algorithms and tools have been designed and developed to train and validate such classification capabilities. However, many of them lack certain scalability, versatility, and rely heavily on genome annotation. In this paper, we design a convenient and biologically meaningful classification tool "Prelnc2" using multi-scale position and frequency information of wavelet transform spectrum and generalizes the frequency statistics method. Finally, we used the extracted features and auxiliary features together to train the model and verify it with test data. PreLnc2 achieved 93.2% accuracy for animal and plant transcripts, outperforming PreLnc by 2.1% improvement and our method provides an effective alternative to the prediction of lncRNAs.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286377 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 86377&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0286377

DOI: 10.1371/journal.pone.0286377

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-30
Handle: RePEc:plo:pone00:0286377