Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
Tao Liu,
Zunwang Ke,
Yanbing Li and
Wushour Silamu
PLOS ONE, 2023, vol. 18, issue 6, 1-16
Abstract:
Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model’s ability to generalize. In addition, most models with triplet loss disregard intra-class compactness during model training, thereby limiting the model’s ability to handle outlier samples with low semantic similarity. Therefore, this paper proposes a non-weighted prototype enhancement module that uses the feature-level similarity between prototypes and relation information as a gate to filter and complete features. Meanwhile, we design a class cluster loss that samples difficult positive and negative samples and explicitly constrains both intra-class compactness and inter-class separability to learn a metric space with high discriminability. Extensive experiments were done on the publicly available dataset FewRel 1.0 and 2.0, and the results show the effectiveness of the proposed model.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286915 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 86915&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0286915
DOI: 10.1371/journal.pone.0286915
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().