Large-deviations of disease spreading dynamics with vaccination
Yannick Feld and
Alexander K Hartmann
PLOS ONE, 2023, vol. 18, issue 7, 1-22
Abstract:
We numerically simulated the spread of disease for a Susceptible-Infected-Recovered (SIR) model on contact networks drawn from a small-world ensemble. We investigated the impact of two types of vaccination strategies, namely random vaccination and high-degree heuristics, on the probability density function (pdf) of the cumulative number C of infected people over a large range of its support. To obtain the pdf even in the range of probabilities as small as 10−80, we applied a large-deviation approach, in particular the 1/t Wang-Landau algorithm. To study the size-dependence of the pdfs within the framework of large-deviation theory, we analyzed the empirical rate function. To find out how typical as well as extreme mild or extreme severe infection courses arise, we investigated the structures of the time series conditioned to the observed values of C.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287932 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87932&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0287932
DOI: 10.1371/journal.pone.0287932
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().