EconPapers    
Economics at your fingertips  
 

Indoor running temporal variability for different running speeds, treadmill inclinations, and three different estimation strategies

Andrea Zignoli, Antoine Godin and Laurent Mourot

PLOS ONE, 2023, vol. 18, issue 7, 1-21

Abstract: Inertial measurement units (IMU) constitute a light and cost-effective alternative to gold-standard measurement systems in the assessment of running temporal variables. IMU data collected on 20 runners running at different speeds (80, 90, 100, 110 and 120% of preferred running speed) and treadmill inclination (±2, ±5, and ±8%) were used here to predict the following temporal variables: stride frequency, duty factor, and two indices of running variability such as the detrended fluctuation analysis alpha (DFA-α) and the Higuchi’s D (HG-D). Three different estimation methodologies were compared: 1) a gold-standard optoelectronic device (which provided the reference values), 2) IMU placed on the runner’s feet, 3) a single IMU on the runner’s thorax used in conjunction with a machine learning algorithm with a short 2-second or a long 120-second window as input. A two-way ANOVA was used to test the presence of significant (p

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287978 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87978&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0287978

DOI: 10.1371/journal.pone.0287978

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0287978