Indoor running temporal variability for different running speeds, treadmill inclinations, and three different estimation strategies
Andrea Zignoli,
Antoine Godin and
Laurent Mourot
PLOS ONE, 2023, vol. 18, issue 7, 1-21
Abstract:
Inertial measurement units (IMU) constitute a light and cost-effective alternative to gold-standard measurement systems in the assessment of running temporal variables. IMU data collected on 20 runners running at different speeds (80, 90, 100, 110 and 120% of preferred running speed) and treadmill inclination (±2, ±5, and ±8%) were used here to predict the following temporal variables: stride frequency, duty factor, and two indices of running variability such as the detrended fluctuation analysis alpha (DFA-α) and the Higuchi’s D (HG-D). Three different estimation methodologies were compared: 1) a gold-standard optoelectronic device (which provided the reference values), 2) IMU placed on the runner’s feet, 3) a single IMU on the runner’s thorax used in conjunction with a machine learning algorithm with a short 2-second or a long 120-second window as input. A two-way ANOVA was used to test the presence of significant (p
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287978 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87978&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0287978
DOI: 10.1371/journal.pone.0287978
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().