EconPapers    
Economics at your fingertips  
 

Computational analysis of control of hepatitis B virus disease through vaccination and treatment strategies

Azhar Iqbal Kashif Butt, Muhammad Imran, Javeria Aslam, Saira Batool and Saira Batool

PLOS ONE, 2023, vol. 18, issue 10, 1-30

Abstract: Hepatitis B disease is an infection caused by a virus that severely damages the liver. The disease can be both acute and chronic. In this article, we design a new nonlinear SVEICHR model to study dynamics of Hepatitis B Virus (HBV) disease. The aim is to carry out a comprehensive mathematical and computational analysis by exploiting preventive measures of vaccination and hospitalization for disease control. Mathematical properties of proposed model such as boundedness, positivity, and existence and uniqueness of the solutions are proved. We also determine the disease free and endemic equilibrium points. To analyze dynamics of HBV disease, we compute a biologically important quantity known as the reproduction number R0 by using next generation method. We also investigate the stability at both of the equilibrium points. To control the spread of disease due to HBV, two feasible optimal control strategies with three different cases are presented. For this, optimal control problem is constructed and Pontryagin maximum principle is applied with a goal to put down the disease in the population. At the end, we present and discuss effective solutions obtained through a MATLAB code.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288024 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88024&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0288024

DOI: 10.1371/journal.pone.0288024

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0288024