EconPapers    
Economics at your fingertips  
 

Healthy core: Harmonizing brain MRI for supporting multicenter migraine classification studies

Hyunsoo Yoon, Todd J Schwedt, Catherine D Chong, Oyekanmi Olatunde and Teresa Wu

PLOS ONE, 2024, vol. 19, issue 12, 1-17

Abstract: Multicenter and multi-scanner imaging studies may be necessary to ensure sufficiently large sample sizes for developing accurate predictive models. However, multicenter studies, incorporating varying research participant characteristics, MRI scanners, and imaging acquisition protocols, may introduce confounding factors, potentially hindering the creation of generalizable machine learning models. Models developed using one dataset may not readily apply to another, emphasizing the importance of classification model generalizability in multi-scanner and multicenter studies for producing reproducible results. This study focuses on enhancing generalizability in classifying individual migraine patients and healthy controls using brain MRI data through a data harmonization strategy. We propose identifying a ’healthy core’—a group of homogeneous healthy controls with similar characteristics—from multicenter studies. The Maximum Mean Discrepancy (MMD) in Geodesic Flow Kernel (GFK) space is employed to compare two datasets, capturing data variabilities and facilitating the identification of this ‘healthy core’. Homogeneous healthy controls play a vital role in mitigating unwanted heterogeneity, enabling the development of highly accurate classification models with improved performance on new datasets. Extensive experimental results underscore the benefits of leveraging a ’healthy core’. We utilized two datasets: one comprising 120 individuals (66 with migraine and 54 healthy controls), and another comprising 76 individuals (34 with migraine and 42 healthy controls). Notably, a homogeneous dataset derived from a cohort of healthy controls yielded a significant 25% accuracy improvement for both episodic and chronic migraineurs.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288300 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88300&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0288300

DOI: 10.1371/journal.pone.0288300

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-02
Handle: RePEc:plo:pone00:0288300