EconPapers    
Economics at your fingertips  
 

Imaging feature-based clustering of financial time series

Jun Wu, Zelin Zhang, Rui Tong, Yuan Zhou, Zhengfa Hu and Kaituo Liu

PLOS ONE, 2023, vol. 18, issue 7, 1-18

Abstract: Timeseries representation underpin our ability to understand and predict the change of natural system. Series are often predicated on our choice of highly redundant factors, and in fact, the system is driven by a much smaller set of latent intrinsic keys. It means that a better representation of data makes points in phase space clearly for researchers. Specially, a 2D structure of timeseries could combine the trend and correlation characters of different periods in timeseries together, which provides more clear information for top tasks. In this work, the effectiveness of 2D structure of timeseries is investigated in clustering tasks. There are 4 kinds of methods that the Recurrent Plot (RP), the Gramian Angular Summation Field (GASF), the Gramian Angular Differential Field (GADF) and the Markov Transition Field (MTF) have been adopted in the analysis. By classifying the CSI300 and S&P500 indexes, we found that the RP imaging series are valid in recognizing abnormal fluctuations of financial timeseries, as the silhouette values of clusters are over 0.6 to 1. Compared with segment methods, the 2D models have the lowest instability value of 0. It verifies that the SIFT features of RP images take advantage of the volatility of financial series for clustering tasks.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288836 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88836&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0288836

DOI: 10.1371/journal.pone.0288836

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0288836