A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction
Zhiwei Zhang,
Shuhui Gong,
Zhaoyu Liu and
Da Chen
PLOS ONE, 2023, vol. 18, issue 9, 1-22
Abstract:
Background: Accurately predicting mobile network traffic can help mobile network operators allocate resources more rationally and can facilitate stable and fast network services to users. However, due to burstiness and uncertainty, it is difficult to accurately predict network traffic. Methodology: Considering the spatio-temporal correlation of network traffic, we proposed a deep-learning model, Convolutional Block Attention Module (CBAM) Spatio-Temporal Convolution Network-Transformer, for time-series prediction based on a CBAM attention mechanism, a Temporal Convolutional Network (TCN), and Transformer with a sparse self-attention mechanism. The model can be used to extract the spatio-temporal features of network traffic for prediction. First, we used the improved TCN for spatial information and added the CBAM attention mechanism, which we named CSTCN. This model dealt with important temporal and spatial features in network traffic. Second, Transformer was used to extract spatio-temporal features based on the sparse self-attention mechanism. The experiments in comparison with the baseline showed that the above work helped significantly to improve the prediction accuracy. We conducted experiments on a real network traffic dataset in the city of Milan. Results: The results showed that CSTCN-Transformer reduced the mean square error and the mean average error of prediction results by 65.16%, 64.97%, and 60.26%, and by 51.36%, 53.10%, and 38.24%, respectively, compared to CSTCN, a Long Short-Term Memory network, and Transformer on test sets, which justified the model design in this paper.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288935 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88935&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0288935
DOI: 10.1371/journal.pone.0288935
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().