EconPapers    
Economics at your fingertips  
 

Interpretable machine learning models to predict short-term postoperative outcomes following posterior cervical fusion

Mert Karabacak and Konstantinos Margetis

PLOS ONE, 2023, vol. 18, issue 7, 1-13

Abstract: By predicting short-term postoperative outcomes before surgery, patients who undergo posterior cervical fusion (PCF) surgery may benefit from more precise patient care plans that reduce the likelihood of unfavorable outcomes. We developed machine learning models for predicting short-term postoperative outcomes and incorporate these models into an open-source web application in this study. The American College of Surgeons National Surgical Quality Improvement Program database was used to identify patients who underwent PCF surgery. Prolonged length of stay, non-home discharges, and readmissions were the three outcomes that were investigated. To predict these three outcomes, machine learning models were developed and incorporated into an open access web application. A total of 6277 patients that underwent PCF surgery were included in the analysis. The most accurately predicted outcome in terms of the area under the receiver operating characteristic curve (AUROC) was the non-home discharges with a mean AUROC of 0.812, and the most accurately predicting algorithm in terms of AUROC was the LightGBM algorithm with a mean AUROC of 0.766. The following URL will take users to the open access web application created to provide predictions for individual patients based on their characteristics: https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-PCF. Machine learning techniques have a significant potential for predicting postoperative outcomes following PCF surgery. The development of predictive models as clinically useful decision-making tools may significantly improve risk assessment and prognosis as the amount of data in spinal surgery keeps growing. Here, we present predictive models for PCF surgery that are meant to accomplish the aforementioned goals and make them publicly available.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288939 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 88939&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0288939

DOI: 10.1371/journal.pone.0288939

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0288939