Cauchy combination omnibus test for normality
Zhen Meng and
Zhenzhen Jiang
PLOS ONE, 2023, vol. 18, issue 8, 1-16
Abstract:
Testing whether data are from a normal distribution is a traditional problem and is of great concern for data analyses. The normality is the premise of many statistical methods, such as t-test, Hotelling T2 test and ANOVA. There are numerous tests in the literature and the commonly used ones are Anderson-Darling test, Shapiro-Wilk test and Jarque-Bera test. Each test has its own advantageous points since they are developed for specific patterns and there is no method that consistently performs optimally in all situations. Since the data distribution of practical problems can be complex and diverse, we propose a Cauchy Combination Omnibus Test (CCOT) that is robust and valid in most data cases. We also give some theoretical results to analyze the good properties of CCOT. Two obvious advantages of CCOT are that not only does CCOT have a display expression for calculating statistical significance, but extensive simulation results show its robustness regardless of the shape of distribution the data comes from. Applications to South African Heart Disease and Neonatal Hearing Impairment data further illustrate its practicability.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289498 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89498&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0289498
DOI: 10.1371/journal.pone.0289498
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().