EconPapers    
Economics at your fingertips  
 

Dynamic avoidance decision method for civil aircraft in a suborbital debris hazard zone

Wantong Chen, Tianru Diao, Shiyu Ren, Shuguang Sun and Ruihua Liu

PLOS ONE, 2023, vol. 18, issue 8, 1-21

Abstract: Closing the static suborbital debris hazard zone method leads to low airspace resource utilization and long delays for civil aircraft, while the dynamic delineation of suborbital debris hazard zone method can solve the above phenomena. However, the existing research lacks the decision instruction for civil aircraft to avoid the dynamic suborbital debris hazard zone. To address the above problems, this paper creates probability ellipsoids of suborbital debris with different ballistic coefficients in the two-dimensional plane and use the divide-and-conquer algorithm for the dynamic delineation of the suborbital debris hazard zone. The suborbital debris hazard zone is extended outward by 10 km. Subsequently, the standard A* algorithm, the standard Lazy theta* algorithm, the improved Lazy theta* algorithm, and a flight path planning strategy are designed to avoid the suborbital debris hazard zone and provide safe dynamic avoidance commands for civil aircraft with fixed time intervals. The simulation results show that the average area of the dynamically delineated suborbital debris hazard zone is lower than the traditional static no-fly zone; the standard A* algorithm and improved Lazy theta* algorithm provides shorter flight path lengths and flight time and fewer waypoints in windless and windy conditions, respectively.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289500 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89500&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0289500

DOI: 10.1371/journal.pone.0289500

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0289500