Edge detection using fast pixel based matching and contours mapping algorithms
T S Arulananth,
P Chinnasamy,
J Chinna Babu,
Ajmeera Kiran,
J Hemalatha and
Mohamed Abbas
PLOS ONE, 2023, vol. 18, issue 8, 1-19
Abstract:
Current methods of edge identification were constrained by issues like lighting changes, position disparity, colour changes, and gesture variability, among others. The aforementioned modifications have a significant impact, especially on scaled factors like temporal delay, gradient data, effectiveness in noise, translation, and qualifying edge outlines. It is obvious that an image’s borders hold the majority of the shape data. Reducing the amount of time it takes for image identification, increase gradient knowledge of the image, improving efficiency in high noise environments, and pinpointing the precise location of an image are some potential obstacles in recognizing edges. the boundaries of an image stronger and more apparent locate those borders in the image initially, sharpening it by removing any extraneous detail with the use of the proper filters, followed by enhancing the edge-containing areas. The processes involved in recognizing edges are filtering, boosting, recognizing, and localizing. Numerous approaches have been suggested for the previously outlined identification of edges procedures. Edge detection using Fast pixel-based matching and contours mappingmethods are used to overcome the aforementioned restrictions for better picture recognition. In this article, we are introducing the Fast Pixel based matching and contours mapping algorithms to compare the edges in reference and targeted frames using mask-propagation and non-local techniques. Our system resists significant item visual fluctuation as well as copes with obstructions because we incorporate input from both the first and prior frames Improvement in performance in proposed system is discussed in result section, evidences are tabulated and sketched. Mainly detection probabilities and detection time is remarkably reinforced Effective identification of such things were widely useful in fingerprint comparison, medical diagnostics, Smart Cities, production, Cyber Physical Systems, incorporating Artificial Intelligence, and license plate recognition are conceivable applications of this suggested work.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289823 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89823&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0289823
DOI: 10.1371/journal.pone.0289823
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().