EconPapers    
Economics at your fingertips  
 

An efficient quasi-Monte Carlo method with forced fixed detection for photon scatter simulation in CT

Guiyuan Lin, Shiwo Deng and Xiaoqun Wang

PLOS ONE, 2023, vol. 18, issue 8, 1-19

Abstract: Detected scattered photons can cause cupping and streak artifacts, significantly degrading the quality of CT images. For fast and accurate estimation of scatter intensities resulting from photon interactions with a phantom, we first transform the path probability of photons interacting with the phantom into a high-dimensional integral. Secondly, we develope a new efficient algorithm called gQMCFFD, which combines graphics processing unit(GPU)-based quasi-Monte Carlo (QMC) with forced fixed detection to approximate this integral. QMC uses low discrepancy sequences for simulation and is deterministic versions of Monte Carlo. Numerical experiments show that the results are in excellent agreement and the efficiency improvement factors are 4 ∼ 46 times in all simulations by gQMCFFD with comparison to GPU-based Monte Carlo methods. And by combining gQMCFFD with sparse matrix method, the simulation time is reduced to 2 seconds in a single projection angle and the relative difference is 3.53%.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290266 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90266&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0290266

DOI: 10.1371/journal.pone.0290266

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pone00:0290266