EconPapers    
Economics at your fingertips  
 

Comparing feedforward neural networks using independent component analysis on hidden units

Seiya Satoh, Kenta Yamagishi and Tatsuji Takahashi

PLOS ONE, 2023, vol. 18, issue 8, 1-15

Abstract: Neural networks are widely used for classification and regression tasks, but they do not always perform well, nor explicitly inform us of the rationale for their predictions. In this study we propose a novel method of comparing a pair of different feedforward neural networks, which draws on independent components obtained by independent component analysis (ICA) on the hidden layers of these networks. It can compare different feedforward neural networks even when they have different structures, as well as feedforward neural networks that learned partially different datasets, yielding insights into their functionality or performance. We evaluate the proposed method by conducting three experiments with feedforward neural networks that have one hidden layer, and verify whether a pair of feedforward neural networks can be compared by the proposed method when the numbers of hidden units in the layer are different, when the datasets are partially different, and when activation functions are different. The results show that similar independent components are extracted from two feedforward neural networks, even when the three circumstances above are different. Our experiments also reveal that mere comparison of weights or activations does not lead to identifying similar relationships. Through the extraction of independent components, the proposed method can assess whether the internal processing of one neural network resembles that of another. This approach has the potential to help understand the performance of neural networks.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290435 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90435&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0290435

DOI: 10.1371/journal.pone.0290435

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0290435