An improved grasshopper-based MPPT approach to reduce tracking time and startup oscillations in photovoltaic system under partial shading conditions
Muhammad Shahid Wasim,
Muhammad Amjad,
Muhammad Abbas Abbasi,
Abdul Rauf Bhatti and
Akhtar Rasool
PLOS ONE, 2023, vol. 18, issue 8, 1-24
Abstract:
Global maximum power point (GMPP) tracking under shading conditions with low tracking time and reduced startup oscillations is one of the challenging tasks in photovoltaic (PV) systems. To cope with this challenge, an improved grasshopper optimization algorithm (IGOA) is proposed in this work to track the GMPP under partial shading conditions (PSC). The performance of the proposed approach is compared with well-known swarm intelligence techniques (SITs) such as gray wolf optimization (GWO), cuckoo search algorithm (CSA), salp swarm algorithm (SSA), improved SSA based on PSO (ISSAPSO), and GOA in terms of tracking time, settling time, failure rate, and startup oscillations. For a fair comparison, the PV system is analysed under uniform irradiance and three PSCs having four to six peaks in the power-voltage characteristic curves and using three to six search agents for each SIT. For this purpose, a PV system containing six solar panels has been built using MATLAB/SIMULINK software, and statistical analysis is performed in detail. The results show that the IGOA tracks the GMPP in 0.07 s and settles the output in 0.12 s which is 25% to 96% faster than its counterparts. Moreover, IGOA proves its consistency with a minimal tracking failure rate of 0% for four to six search agents with negligible startup oscillations. This work is expected to be helpful to PV system installers in obtaining maximum benefits from the installed system.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290669 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90669&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0290669
DOI: 10.1371/journal.pone.0290669
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().