EconPapers    
Economics at your fingertips  
 

Complex network-based classification of radiographic images for COVID-19 diagnosis

Weiguang Liu, Rafael Delalibera Rodrigues, Jianglong Yan, Yu-tao Zhu, Everson José de Freitas Pereira, Gen Li, Qiusheng Zheng and Liang Zhao

PLOS ONE, 2023, vol. 18, issue 9, 1-26

Abstract: In this work, we present a network-based technique for chest X-ray image classification to help the diagnosis and prognosis of patients with COVID-19. From visual inspection, we perceive that healthy and COVID-19 chest radiographic images present different levels of geometric complexity. Therefore, we apply fractal dimension and quadtree as feature extractors to characterize such differences. Moreover, real-world datasets often present complex patterns, which are hardly handled by only the physical features of the data (such as similarity, distance, or distribution). This issue is addressed by complex networks, which are suitable tools for characterizing data patterns and capturing spatial, topological, and functional relationships in data. Specifically, we propose a new approach combining complexity measures and complex networks to provide a modified high-level classification technique to be applied to COVID-19 chest radiographic image classification. The computational results on the Kaggle COVID-19 Radiography Database show that the proposed method can obtain high classification accuracy on X-ray images, being competitive with state-of-the-art classification techniques. Lastly, a set of network measures is evaluated according to their potential in distinguishing the network classes, which resulted in the choice of communicability measure. We expect that the present work will make significant contributions to machine learning at the semantic level and to combat COVID-19.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290968 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90968&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0290968

DOI: 10.1371/journal.pone.0290968

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0290968