Research of the crankshaft high cycle bending fatigue experiment design method based on the modified unscented Kalman filtering algorithm and the SAFL approach
Shuyang Rui,
Dongdong Jiang,
Songsong Sun and
Xiaolin Gong
PLOS ONE, 2023, vol. 18, issue 9, 1-17
Abstract:
In modern engineering application, enough high cycle bending fatigue strength is the necessary factor to provide the basic safety security for the application of the crankshaft in automobile engines (both diesel and gasoline types). At present, this parameter is usually obtained through the standard bending fatigue experiment process, which is time consuming and expensive. In this paper, a new accelerated crankshaft bending fatigue experiment was proposed step by step. First the loading procedure was quickened through the prediction of the residual fatigue life based on the UKF (unscented Kalman filtering algorithm). Then the accuracy of the predictions was improved based on the modified sampling range and the theory of fracture mechanics. Finally the statistical analysis method of the fatigue limit load was performed based on the above predictions. The main conclusion of this paper is that the proposed accelerated bending fatigue experiment can save more than 30% of the bending fatigue experiment period and provide nearly the same fatigue limit load analysis result. In addition, compared with the particle filtering algorithm method, the modified UKF can provide much higher accuracy in predicting the residual bending fatigue life of the crankshaft, which makes this method more superior to be applied in actual engineering.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291135 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 91135&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0291135
DOI: 10.1371/journal.pone.0291135
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().