EconPapers    
Economics at your fingertips  
 

Examining explainable clinical decision support systems with think aloud protocols

Sabrina G Anjara, Adrianna Janik, Amy Dunford-Stenger, Kenneth Mc Kenzie, Ana Collazo-Lorduy, Maria Torrente, Luca Costabello and Mariano Provencio

PLOS ONE, 2023, vol. 18, issue 9, 1-21

Abstract: Machine learning tools are increasingly used to improve the quality of care and the soundness of a treatment plan. Explainable AI (XAI) helps users in understanding the inner mechanisms of opaque machine learning models and is a driver of trust and adoption. Explanation methods for black-box models exist, but there is a lack of user studies on the interpretability of the provided explanations. We used a Think Aloud Protocol (TAP) to explore oncologists’ assessment of a lung cancer relapse prediction system with the aim of refining the purpose-built explanation model for better credibility and utility. Novel to this context, TAP is used as a neutral methodology to elicit experts’ thought processes and judgements of the AI system, without explicit prompts. TAP aims to elicit the factors which influenced clinicians’ perception of credibility and usefulness of the system. Ten oncologists took part in the study. We conducted a thematic analysis of their verbalized responses, generating five themes that help us to understand the context within which oncologists’ may (or may not) integrate an explainable AI system into their working day.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291443 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 91443&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0291443

DOI: 10.1371/journal.pone.0291443

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0291443