Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: A systematic review and meta-analysis
Mahdi Masrour,
Shaghayegh Khanmohammadi,
Parisa Fallahtafti and
Nima Rezaei
PLOS ONE, 2023, vol. 18, issue 9, 1-22
Abstract:
Background: Head and neck squamous cell carcinoma (HNSCC) is a group of malignancies arising from the epithelium of the head and neck. Despite efforts in treatment, results have remained unsatisfactory, and the death rate is high. Early diagnosis of HNSCC has clinical importance due to its high rates of invasion and metastasis. This systematic review and meta-analysis evaluated the diagnostic accuracy of lncRNAs in HNSCC patients. Methods: PubMed, ISI, SCOPUS, and EMBASE were searched for original publications published till April 2023 using MeSH terms and free keywords “long non-coding RNA” and “head and neck squamous cell carcinoma” and their expansions. The Reitsma bivariate random effect model pooled diagnostic test performance for studies that reported specificity and sensitivity; diagnostic AUC values from all trials were meta-analyzed using the random effects model with the inverse variance method. Results: The initial database search yielded 3209 articles, and 25 studies met our criteria. The cumulative sensitivity and specificity for lncRNAs in the diagnosis of HNSCC were 0.74 (95%CI: 0.68–0.7 (and 0.79 (95%CI: 0.74–0.83), respectively. The pooled AUC value for all specimen types was found to be 0.83. Using the inverse variance method, 71 individual lncRNAs yielded a pooled AUC of 0.77 (95%CI: 0.74–0.79). Five studies reported on the diagnostic accuracy of the MALAT1 lncRNA with a pooled AUC value of 0.83 (95%CI: 0.73–0.94). Conclusions: LncRNAs could be used as diagnostic biomarkers for HNSCC, but further investigation is needed to validate clinical efficacy and elucidate mechanisms. High-throughput sequencing and bioinformatics should be used to ascertain expression profiles.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291921 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 91921&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0291921
DOI: 10.1371/journal.pone.0291921
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().