The combination model of CNN and GCN for machine fault diagnosis
Qianqian Zhang,
Caiyun Hao,
Zhongwei Lv and
Qiuxia Fan
PLOS ONE, 2023, vol. 18, issue 10, 1-18
Abstract:
Learning powerful discriminative features is the key for machine fault diagnosis. Most existing methods based on convolutional neural network (CNN) have achieved promising results. However, they primarily focus on global features derived from sample signals and fail to explicitly mine relationships between signals. In contrast, graph convolutional network (GCN) is able to efficiently mine data relationships by taking graph data with topological structure as input, making them highly effective for feature representation in non-Euclidean space. In this article, to make good use of the advantages of CNN and GCN, we propose a graph attentional convolutional neural network (GACNN) for effective intelligent fault diagnosis, which includes two subnetworks of fully CNN and GCN to extract the multilevel features information, and uses Efficient Channel Attention (ECA) attention mechanism to reduce information loss. Extensive experiments on three datasets show that our framework improves the representation ability of features and fault diagnosis performance, and achieves competitive accuracy against other approaches. And the results show that GACNN can achieve superior performance even under a strong background noise environment.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292381 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92381&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0292381
DOI: 10.1371/journal.pone.0292381
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().