CARRoT: R-package for predictive modelling by means of regression, adjusted for multiple regularisation methods
Alina Bazarova and
Marko Raseta
PLOS ONE, 2023, vol. 18, issue 10, 1-22
Abstract:
We present an R-package for predictive modelling, CARRoT (Cross-validation, Accuracy, Regression, Rule of Ten). CARRoT is a tool for initial exploratory analysis of the data, which performs exhaustive search for a regression model yielding the best predictive power with heuristic ‘rules of thumb’ and expert knowledge as regularization parameters. It uses multiple hold-outs in order to internally validate the model. The package allows to take into account multiple factors such as collinearity of the predictors, event per variable rules (EPVs) and R-squared statistics during the model selection. In addition, other constraints, such as forcing specific terms and restricting complexity of the predictive models can be used. The package allows taking pairwise and three-way interactions between variables into account as well. These candidate models are then ranked by predictive power, which is assessed via multiple hold-out procedures and can be parallelised in order to reduce the computational time. Models which exhibited the highest average predictive power over all hold-outs are returned. This is quantified as absolute and relative error in case of continuous outcomes, accuracy and AUROC values in case of categorical outcomes. In this paper we briefly present statistical framework of the package and discuss the complexity of the underlying algorithm. Moreover, using CARRoT and a number of datasets available in R we provide comparison of different model selection techniques: based on EPVs alone, on EPVs and R-squared statistics, on lasso regression, on including only statistically significant predictors and on stepwise forward selection technique.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292597 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92597&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0292597
DOI: 10.1371/journal.pone.0292597
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().