EconPapers    
Economics at your fingertips  
 

A linearly decreasing deterministic annealing algorithm for the multi-vehicle dial-a-ride problem

Amir Mortazavi, Milad Ghasri and Tapabrata Ray

PLOS ONE, 2024, vol. 19, issue 2, 1-26

Abstract: Dial a ride problem (DARP) is a complex version of the pick-up and delivery problem with many practical applications in the field of transportation. This study proposes an enhanced deterministic annealing algorithm for the solution of large-scale multi-vehicle DARPs. The proposed method always explores the feasible search space; therefore, a feasible solution is guaranteed at any point of termination. This method utilises advanced local search operators to accelerate the search for optimal solutions and it relies on a linearly decreasing deterministic annealing schedule to limit poor jumps during the course of search. This study puts forward a systematic series of experiments to compare the performance of solution methods from various angles. The proposed method is compared with the most efficient methods reported in the literature i.e., the Adaptive Large Neighbourhood Search (ALNS), Evolutionary Local Search (ELS), and Deterministic Annealing (DA) using standard benchmarks. The results suggest that the proposed algorithm is on average faster than the state-of-the-art algorithms in reaching competitive objective values across the range of benchmarks.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292683 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92683&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0292683

DOI: 10.1371/journal.pone.0292683

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0292683