EconPapers    
Economics at your fingertips  
 

Channel semantic mutual learning for visible-thermal person re-identification

Yingjie Zhu and Wenzhong Yang

PLOS ONE, 2024, vol. 19, issue 1, 1-14

Abstract: Visible-infrared person re-identification (VI-ReID) is a cross-modality retrieval issue aiming to match the same pedestrian between visible and infrared cameras. Thus, the modality discrepancy presents a significant challenge for this task. Most methods employ different networks to extract features that are invariant between modalities. While we propose a novel channel semantic mutual learning network (CSMN), which attributes the difference in semantics between modalities to the difference at the channel level, it optimises the semantic consistency between channels from two perspectives: the local inter-channel semantics and the global inter-modal semantics. Meanwhile, we design a channel-level auto-guided double metric loss (CADM) to learn modality-invariant features and the sample distribution in a fine-grained manner. We conducted experiments on RegDB and SYSU-MM01, and the experimental results validate the superiority of CSMN. Especially on RegDB datasets, CSMN improves the current best performance by 3.43% and 0.5% on the Rank-1 score and mINP value, respectively. The code is available at https://github.com/013zyj/CSMN.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293498 (text/html)
https://journals.plos.org/plosone/article?id=10.13 ... 93498&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0293498

DOI: 10.1371/journal.pone.0293498

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0293498