EconPapers    
Economics at your fingertips  
 

Research on improved gangue target detection algorithm based on Yolov8s

Zhibo Fu, Xinpeng Yuan, Zhengkun Xie, RunZhi Li and Li Huang

PLOS ONE, 2024, vol. 19, issue 7, 1-16

Abstract: An improved algorithm based on Yolov8s is proposed to address the slower speed, higher number of parameters, and larger computational cost of deep learning in coal gangue target detection. A lightweight network, Fasternet, is used as the backbone to increase the speed of object detection and reduce the model complexity. By replacing Slimneck with the C2F part in the HEAD module, the aim is to reduce model complexity and improve detection accuracy. The detection accuracy is effectively improved by replacing the Detect layer with Detect-DyHead. The introduction of DIoU loss function instead of CIoU loss function and the combination of BAM block attention mechanism makes the model pay more attention to critical features, which further improves the detection performance. The results show that the improved model compresses the storage size of the model by 28%, reduces the number of parameters by 28.8%, reduces the computational effort by 34.8%, and improves the detection accuracy by 2.5% compared to the original model. The Yolov8s-change model provides a fast, real-time and efficient detection solution for gangue sorting. This provides a strong support for the intelligent sorting of coal gangue.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293777 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 93777&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0293777

DOI: 10.1371/journal.pone.0293777

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0293777