Machine learning prediction model based on enhanced bat algorithm and support vector machine for slow employment prediction
Yan Wei,
Xili Rao,
Yinjun Fu,
Li Song,
Huiling Chen and
Junhong Li
PLOS ONE, 2023, vol. 18, issue 11, 1-31
Abstract:
The employment of college students is an important issue that affects national development and social stability. In recent years, the increase in the number of graduates, the pressure of employment, and the epidemic have made the phenomenon of ’slow employment’ increasingly prominent, becoming an urgent problem to be solved. Data mining and machine learning methods are used to analyze and predict the employment prospects for graduates and provide effective employment guidance and services for universities, governments, and graduates. It is a feasible solution to alleviate the problem of ’slow employment’ of graduates. Therefore, this study proposed a feature selection prediction model (bGEBA-SVM) based on an improved bat algorithm and support vector machine by extracting 1694 college graduates from 2022 classes in Zhejiang Province. To improve the search efficiency and accuracy of the optimal feature subset, this paper proposed an enhanced bat algorithm based on the Gaussian distribution-based and elimination strategies for optimizing the feature set. The training data were input to the support vector machine for prediction. The proposed method is experimented by comparing it with peers, well-known machine learning models on the IEEE CEC2017 benchmark functions, public datasets, and graduate employment prediction dataset. The experimental results show that bGEBA-SVM can obtain higher prediction Accuracy, which can reach 93.86%. In addition, further education, student leader experience, family situation, career planning, and employment structure are more relevant characteristics that affect employment outcomes. In summary, bGEBA-SVM can be regarded as an employment prediction model with strong performance and high interpretability.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294114 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 94114&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0294114
DOI: 10.1371/journal.pone.0294114
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().