EconPapers    
Economics at your fingertips  
 

CTIVA: Censored time interval variable analysis

Insoo Kim, Junhee Seok and Yoojoong Kim

PLOS ONE, 2023, vol. 18, issue 11, 1-13

Abstract: Traditionally, datasets with multiple censored time-to-events have not been utilized in multivariate analysis because of their high level of complexity. In this paper, we propose the Censored Time Interval Analysis (CTIVA) method to address this issue. It estimates the joint probability distribution of actual event times in the censored dataset by implementing a statistical probability density estimation technique on the dataset. Based on the acquired event time, CTIVA investigates variables correlated with the interval time of events via statistical tests. The proposed method handles both categorical and continuous variables simultaneously—thus, it is suitable for application on real-world censored time-to-event datasets, which include both categorical and continuous variables. CTIVA outperforms traditional censored time-to-event data handling methods by 5% on simulation data. The average area under the curve (AUC) of the proposed method on the simulation dataset exceeds 0.9 under various conditions. Further, CTIVA yields novel results on National Sample Cohort Demo (NSCD) and proteasome inhibitor bortezomib dataset, a real-world censored time-to-event dataset of medical history of beneficiaries provided by the National Health Insurance Sharing Service (NHISS) and National Center for Biotechnology Information (NCBI). We believe that the development of CTIVA is a milestone in the investigation of variables correlated with interval time of events in presence of censoring.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294513 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 94513&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0294513

DOI: 10.1371/journal.pone.0294513

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0294513