EconPapers    
Economics at your fingertips  
 

Information-theoretical analysis of the neural code for decoupled face representation

Miguel Ibáñez-Berganza, Carlo Lucibello, Luca Mariani and Giovanni Pezzulo

PLOS ONE, 2024, vol. 19, issue 1, 1-23

Abstract: Processing faces accurately and efficiently is a key capability of humans and other animals that engage in sophisticated social tasks. Recent studies reported a decoupled coding for faces in the primate inferotemporal cortex, with two separate neural populations coding for the geometric position of (texture-free) facial landmarks and for the image texture at fixed landmark positions, respectively. Here, we formally assess the efficiency of this decoupled coding by appealing to the information-theoretic notion of description length, which quantifies the amount of information that is saved when encoding novel facial images, with a given precision. We show that despite decoupled coding describes the facial images in terms of two sets of principal components (of landmark shape and image texture), it is more efficient (i.e., yields more information compression) than the encoding in terms of the image principal components only, which corresponds to the widely used eigenface method. The advantage of decoupled coding over eigenface coding increases with image resolution and is especially prominent when coding variants of training set images that only differ in facial expressions. Moreover, we demonstrate that decoupled coding entails better performance in three different tasks: the representation of facial images, the (daydream) sampling of novel facial images, and the recognition of facial identities and gender. In summary, our study provides a first principle perspective on the efficiency and accuracy of the decoupled coding of facial stimuli reported in the primate inferotemporal cortex.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295054 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95054&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295054

DOI: 10.1371/journal.pone.0295054

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-07
Handle: RePEc:plo:pone00:0295054