Estimating emergency department crowding with stochastic population models
Gil Parnass,
Osnat Levtzion-Korach,
Renana Peres and
Michael Assaf
PLOS ONE, 2023, vol. 18, issue 12, 1-17
Abstract:
Environments such as shopping malls, airports, or hospital emergency-departments often experience crowding, with many people simultaneously requesting service. Crowding highly fluctuates, with sudden overcrowding "spikes". Past research has either focused on average behavior, used context-specific models with a large number of parameters, or machine-learning models that are hard to interpret. Here we show that a stochastic population model, previously applied to a broad range of natural phenomena, can aptly describe hospital emergency-department crowding. We test the model using data from five-year minute-by-minute emergency-department records. The model provides reliable forecasting of the crowding distribution. Overcrowding is highly sensitive to the patient arrival-flux and length-of-stay: a 10% increase in arrivals triples the probability of overcrowding events. Expediting patient exit-rate to shorten the typical length-of-stay by just 20 minutes (8.5%) cuts the probability of severe overcrowding events by 50%. Such forecasting is critical in prevention and mitigation of breakdown events. Our results demonstrate that despite its high volatility, crowding follows a dynamic behavior common to many systems in nature.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295130 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95130&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295130
DOI: 10.1371/journal.pone.0295130
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().