EconPapers    
Economics at your fingertips  
 

Global domain adaptation attention with data-dependent regulator for scene segmentation

Qiuyuan Lei and Fei Lu

PLOS ONE, 2024, vol. 19, issue 2, 1-18

Abstract: Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295263 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95263&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295263

DOI: 10.1371/journal.pone.0295263

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-30
Handle: RePEc:plo:pone00:0295263