EconPapers    
Economics at your fingertips  
 

Chinese text dual attention network for aspect-level sentiment classification

Xinjie Sun, Zhifang Liu, Hui Li, Feng Ying and Yu Tao

PLOS ONE, 2024, vol. 19, issue 3, 1-24

Abstract: English text has a clear and compact subject structure, which makes it easy to find dependency relationships between words. However, Chinese text often conveys information using situational settings, which results in loose sentence structures, and even most Chinese comments and experimental summary texts lack subjects. This makes it challenging to determine the dependency relationship between words in Chinese text, especially in aspect-level sentiment recognition. To solve this problem faced by Chinese text in the field of sentiment recognition, a Chinese text dual attention network for aspect-level sentiment recognition is proposed. First, Chinese syntactic dependency is proposed, and sentiment dictionary is introduced to quickly and accurately extract aspect-level sentiment words, opinion extraction and classification of sentimental trends in text. Additionally, in order to extract context-level features, the CNN-BILSTM model and position coding are also introduced. Finally, to better extract fine-grained aspect-level sentiment, a two-level attention mechanism is used. Compared with ten advanced baseline models, the model’s capabilities are being further optimized for better performance, with Accuracy of 0.9180, 0.9080 and 0.8380 respectively. This method is being demonstrated by a vast array of experiments to achieve higher performance in aspect-level sentiment recognition in less time, and ablation experiments demonstrate the importance of each module of the model.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295331 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95331&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295331

DOI: 10.1371/journal.pone.0295331

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0295331