EconPapers    
Economics at your fingertips  
 

Deep learning-based idiomatic expression recognition for the Amharic language

Demeke Endalie, Getamesay Haile and Wondmagegn Taye

PLOS ONE, 2023, vol. 18, issue 12, 1-14

Abstract: Idiomatic expressions are built into all languages and are common in ordinary conversation. Idioms are difficult to understand because they cannot be deduced directly from the source word. Previous studies reported that idiomatic expression affects many Natural language processing tasks in the Amharic language. However, most natural language processing models used with the Amharic language, such as machine translation, semantic analysis, sentiment analysis, information retrieval, question answering, and next-word prediction, do not consider idiomatic expressions. As a result, in this paper, we proposed a convolutional neural network (CNN) with a FastText embedding model for detecting idioms in an Amharic text. We collected 1700 idiomatic and 1600 non-idiomatic expressions from Amharic books to test the proposed model’s performance. The proposed model is then evaluated using this dataset. We employed an 80 by 10,10 splitting ratio to train, validate, and test the proposed idiomatic recognition model. The proposed model’s learning accuracy across the training dataset is 98%, and the model achieves 80% accuracy on the testing dataset. We compared the proposed model to machine learning models like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest classifiers. According to the experimental results, the proposed model produces promising results.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295339 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95339&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295339

DOI: 10.1371/journal.pone.0295339

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0295339