TCP BBR-n: Increased throughput for wireless-AC networks
Muhammad Ahsan and
Sajid S Muhammad
PLOS ONE, 2023, vol. 18, issue 12, 1-26
Abstract:
Google proposed a new TCP congestion control algorithm (CCA), Bottleneck Bandwidth and Round-trip propagation time (BBR) which has opened up new dimensions in congestion control. BBR tries to operate near Kleinrock’s operating point to avoid excessive queue formation at the bottleneck and to use the link bandwidth optimally. BBR creates a model of the network path by measuring the bottleneck bandwidth and minimum round-trip time (RTT) to maximize the delivery rate and minimize latency. BBR v2 is an updated version of BBR which addresses many shortcomings of the original BBR (BBR v1) such as interprotocol fairness, RTT fairness, and excessive retransmissions. However, BBR v2 has certain limitations in its operation in IEEE 802.11ac (Wi-Fi 5) networks. The default BBR v2 limits the throughput of Wi-Fi 5 and an increased latency has been observed. This is because the Wi-Fi 5 frame aggregation logic is underutilized and fewer frames are being sent to the Wi-Fi 5 interface. In this paper, we have proposed BBR-n (BBR new) which provides better throughput than the generic BBR v2 in the Wi-Fi 5 networks. Real-time experiments were performed over a physical testbed using Flent to confirm that BBR-n achieves over double throughput as compared to generic BBR v2 and reduced latency in networks as compared to pure loss-based variants such as Cubic and Reno.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295576 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95576&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295576
DOI: 10.1371/journal.pone.0295576
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().