Robust meta gradient learning for high-dimensional data with noisy-label ignorance
Ben Liu and
Yu Lin
PLOS ONE, 2023, vol. 18, issue 12, 1-27
Abstract:
Large datasets with noisy labels and high dimensions have become increasingly prevalent in industry. These datasets often contain errors or inconsistencies in the assigned labels and introduce a vast number of predictive variables. Such issues frequently arise in real-world scenarios due to uncertainties or human errors during data collection and annotation processes. The presence of noisy labels and high dimensions can significantly impair the generalization ability and accuracy of trained models. To address the above issues, we introduce a simple-structured penalized γ-divergence model and a novel meta-gradient correction algorithm and establish the foundations of these two modules based on rigorous theoretical proofs. Finally, comprehensive experiments are conducted to validate their effectiveness in detecting noisy labels and mitigating the curse of dimensionality and suggest that our proposed model and algorithm can achieve promising outcomes. Moreover, we open-source our codes and distinctive datasets on GitHub (refer to https://github.com/DebtVC2022/Robust_Learning_with_MGC).
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295678 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95678&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0295678
DOI: 10.1371/journal.pone.0295678
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().