EconPapers    
Economics at your fingertips  
 

OssaNMA: An R package for using information from network meta-analyses to optimize the power and sample allocation of a new two-arm trial

Fangshu Ye, Chong Wang and Annette M O’Connor

PLOS ONE, 2023, vol. 18, issue 12, 1-23

Abstract: Randomized clinical trials (RCTs) are designed for measuring the effectiveness of the treatments and testing a hypothesis regarding the relative effect between two or more treatments. Trial designers are often interested in maximizing power when the total sample size is fixed or minimizing the required total sample size to reach a pre-specified power. One approach to maximizing power proposed by previous researchers is to leverage prior evidence using meta-analysis (NMA) to inform the sample size determination of a new trial. For example, researchers may be interested in designing a two-arm trial comparing treatments A and B which are already in the existing trial network but do not have any direct comparison. The researchers’ intention is to incorporate the result into an existing network for meta-analysis. Here we develop formulas to address these options and use simulations to validate our formula and evaluate the performance of different analysis methods in terms of power. We also implement our proposed method into the R package OssaNMA and publish an R Shiny app for the convenience of the application. The goal of the package is to enable researchers to readily adopt the proposed approach which can improve the power of an RCT and is therefore resource-saving. In the R Shiny app, We also provide the option to include the cost of each treatment which would enable researchers to compare the total treatment cost associated with each design and analysis approach. Further, we explore the effect of allocation to treatment group on study power when the a priori plan is to incorporate the new trial result into an existing network for meta-analysis.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296020 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96020&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296020

DOI: 10.1371/journal.pone.0296020

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0296020